Gas sensing properties of single conducting polymer nanowires and the effect of temperature.

نویسندگان

  • Yaping Dan
  • Yanyan Cao
  • Tom E Mallouk
  • Stephane Evoy
  • A T Charlie Johnson
چکیده

We measured the electronic properties and gas sensing responses of template-grown poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS)-based nanowires. The nanowires had a 'striped' structure (gold-PEDOT/PSS-gold), and were typically 8 microm long (1 microm-6 microm-1 microm for the sections, respectively) and 220 nm in diameter. Single-nanowire devices were contacted with pre-fabricated gold electrodes using dielectrophoretic assembly. A polymer conductivity of 11.5 +/- 0.7 S cm(-1) and a contact resistance of 27.6 +/- 4 kOmega were inferred from measurements on nanowires of varying length and diameter. The nanowire sensors detected a variety of odors, with rapid response and recovery (seconds). The response (DeltaR/R) varied as a power law with analyte concentration. The power law exponent was found to increase with the molecular weight of the analyte and as a function of temperature. The detection limits are set by noise intrinsic to the device and are at the ppm level even for very volatile analytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The study of humidity effect on carbon dioxide gas sensing properties of zinc oxide nanowires assisted by polyvinyl alcohol network at room temperature

In this research, Zinc oxide (ZnO) nanostructures were synthesized by low cost hydrothermal method. The grown ZnO nanostructures had a dispersed distribution with nanowire morphology and the specific surface area of about 7 m2.gr-1 which they have crystalized in hexagonal wurtzite structure. ZnO nanowires/polyvinyl alcohol network (ZP) on the epoxy glass substrate with cu-interdigited electrods...

متن کامل

Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique

Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD) process on quartz substrates. Afterwards, a thin  layer of palladium (Pd) as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors...

متن کامل

Electrical properties of single and multiple poly(3,4-ethylenedioxythiophene) nanowires for sensing nitric oxide gas.

The electrical properties of conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), nanowires were studied to develop nitric oxide (NO) gas sensors with low working temperatures. A nanowire with a diameter of 300 nm was fabricated using dip-pen nanolithography (DPN) across a 55 microm gap between a pair of electrodes. The electrical properties of single or multiple PEDOT nanowires were e...

متن کامل

Preparation and Characterization of Multiwalled Carbon Nanotubes-Polythiophene Nanocomposites and its Gas Sensitivity Study at Room Temperature

The nanocomposites of polythiophene and carboxylated multiwalled carbon nanotubes (MWCNTs) were synthesized by in-situ chemical oxidative polymerization method using anhydrous ferric chloride (FeCl3) as an oxidant. The MWCNTs functionalized and ultrasonicated to obtain uniform dispersion within the polythiophene matrix. Field emission scanning electron microscopy was used to characterize the mo...

متن کامل

Polymer Single-Nanowire Optical Sensor

Although nanowires have attracted much interest in sensing applications, polymer single nanowires for optical sensing, which promises greater versatility and superior performances, remains unexplored. To date, most of these single nanowire devices have been focused on the electrical conductance change when exposed to the species. However, optical detection are highly desired owing to its advant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 43  شماره 

صفحات  -

تاریخ انتشار 2009